Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add filters








Year range
1.
Acta cir. bras ; 35(1): e202000102, 2020. graf
Article in English | LILACS | ID: biblio-1088522

ABSTRACT

Abstract Purpose To evaluate the local effect of simvastatin (SVT) combined with deproteinized bovine bone (DBB) with hydroxyapatite/β-tricalcium phosphate biphasic ceramics (HA/TCP) and with collagen sponge (CS) on bone repair in critical size defects (CSDs) in rat calvaria. Methods Forty-two 5-mm diameter CSDs were made bilaterally in the calvaria of 18 rats. The animals were allocated according to the type of biomaterial and associations used to fill the CSD. After 8 weeks, the animals were euthanized, and their calvaria were evaluated for repaired tissue composition using histologic and histometric analyses. Results In the histometric analysis, the use of SVT showed to increase bone formation in the CSDs when combined with all the bone substitutes tested in this study (p<0.05). Greater bone formation was observed in the groups with SVT compared to the groups without SVT. Conclusions The use of SVT without the need for a vehicle and combined with a commercially available biomaterial may be a cheaper way to potentiate the formation of bone tissue without the need to produce new biomaterials. Therefore, SVT combined with DBB induced significantly greater new bone formation than did the other treatments.


Subject(s)
Humans , Animals , Female , Cattle , Rats , Osteogenesis/drug effects , Skull/drug effects , Biocompatible Materials/pharmacology , Collagen/pharmacology , Bone Substitutes/pharmacology , Simvastatin/pharmacology , Skull/surgery , Bone Regeneration/drug effects , Bone Transplantation/methods , Rats, Wistar , Disease Models, Animal , Anticholesteremic Agents/pharmacology
2.
Acta cir. bras ; 31(5): 300-307, May 2016. tab, graf
Article in English | LILACS | ID: lil-783796

ABSTRACT

ABSTRACT PURPOSE: To investigate the effects of locally applied simvastatin plus biphasic calcium phosphate (BoneCeramic(r)) or collagen sponge on bone formation in critical-sized bone defects. METHODS: Thirty defects of 5mm in diameter were created bilaterally with a trephine bur in the calvariae of fifteen Wistar rats. The defects were divided into five groups: group 1 - control, no treatment; group 2 (BoneCeramic(r)); group 3 (BoneCeramic(r) + 0.1mg simvastatin); group 4 (collagen sponge); and group 5 (collagen sponge + 0.1mg simvastatin). After eight weeks the animals were euthanized and their calvariae were histologically processed. Hematoxylin and eosin-stained sections were subjected to histological and histomorphometrical analyses. The area of newly formed bone was calculated and compared between groups. RESULTS: The greater amount of a bone-like tissue was formed around the carrier in group 3 (BoneCeramic(r) + 0.1mg simvastatin) followed by group 2 (BoneCeramic(r)), and almost no bone was formed in the other groups. Group 3 was significantly different compared to group 2, and both groups were significantly different compared to the other groups. CONCLUSION: Simvastatin combined with BoneCeramic(r) induced significantly greater amounts of newly formed bone and has great potential for the healing of bone defects.


Subject(s)
Animals , Female , Osteogenesis/drug effects , Skull/drug effects , Simvastatin/pharmacology , Hydroxyapatites/pharmacology , Anticholesteremic Agents/pharmacology , Skull/injuries , Skull/pathology , Wound Healing , Bone Matrix/ultrastructure , Collagen/drug effects , Rats, Wistar , Disease Models, Animal
3.
Acta cir. bras ; 29(3): 151-157, 03/2014. graf
Article in English | LILACS | ID: lil-703521

ABSTRACT

To analyze the effects of simvastatin (SVT) in the locomotion, anxiety and memory of rats, as a reflection of the administration of a minimum dose capable of stimulating bone regeneration in defects in the calvariae. METHODS: Surgical procedures were performed in 15 female Wistar rats, 2-month old, to insert the grafting material regenerator (Bone-ceramic(r)) and/or SVT, followed by behavioural and cognitive assessments in the 7th, 30th and 60th days post surgery. RESULTS: The SVT locally applied with the goal of bone regeneration in defects created in rat calvariae does not interfere with locomotion, anxiety levels and/or memories of rats, except for the first week following surgery, when an anxiolytic effect was observed, as a result of a possible central action. CONCLUSION: Failure to provoke any response within 30 and 60 days post surgical procedures suggests that SVT may constitute a good choice in stimulating bone regeneration without affecting the long term neural functions.


Subject(s)
Animals , Rats , General Surgery , Bone Regeneration/physiology , Simvastatin , Rats
4.
ImplantNews ; 6(2): 137-141, mar.-abr. 2009. ilus
Article in Portuguese | LILACS, BBO | ID: lil-523910

ABSTRACT

O objetivo deste estudo foi avaliar uma superfície de implante dentário compatível biologicamente e que aumente a resposta celular de osteoblastos de maneira a estimular o processo de diferenciação do tecido ósseo. Neste estudo foram utilizados discos de titânio comercialmente puro (cpTi) grau IV (6,0 mm x 1,0 mm) divididos em três grupos. Estes discos foram somente usinados (grupo U) ou usinados e subsequentemente tratados com ataque ácido (grupo Ac) ou usinado, jateamento e ataque ácido (grupo J/Ac). Células mesenquimais humanas indiferenciadas foram cultivadas sobre os discos e diferenciadas em osteoblastos. Os níveis de expressão de genes relacionados à diferenciação do tecido ósseo (Fostatase Alcalina-ALP; Sialoproteína Óssea-BSP; e Runx2) foram avaliados após sete e 21 dias através de PCR-tempo real (o gene GAPDH foi utilizado como controle endógeno). Após 35 dias avaliou-se a formação de nódulos de mineralização corados com Alizarin Red S. Observou-se um aumento relativo nos níveis de expressão dos genes ALP, BSP e Runx2 para a superfície com J/Ac quando comparada com as superfícies U e Ac. Após 21 dias a expressão de ALP estava 80 vezes maior na superfície J/Ac e o aumento no nível de BSP foi de 25 vezes. Após 35 dias a área mineralizada foi de 18%, 71% e 80%, para as superfícies U, Ac e J/Ac, respectivamente. Estes resultados sugerem que o jateamento da superfície previamente ao ataque ácido permitiu um maior nível de expressão de genes relacionados à cascata de diferenciação do tecido ósseo e formação de nódulos de mineralização in vitro, podendo levar a uma maior e melhor resposta de osseointegração destas superfícies.


Novel implant surfaces have been developed to improve/accelerate the osseointegration process. The mechanism by which implant surface improves osteoblast response at endosseous titanium implants is not fully understood. One of the mechanisms is related to induction of expression of bone-tissue specific genes inducing cells to differentiate into osteoblasts. The aim of this study was to evaluate a biologically compatible implant surface that can improve osteoblast responses and leads to a faster osseointegration. Commercially pure grade IV titanium disks (6.0x1.0mm) were machined (U) or machined acid etching (Ac) or sandblasted/acid etching (J/Ac), and divided into three groups. Human Mesenchymal Stem Cells were plated onto the disks and differentiated into osteoblasts. The expression levels of osteoblast-specific genes were evaluated by Real Time PCR to measure the mRNA levels of alkaline phosphatase (ALP), bone sialoprotein (BSP), and Runx2 after 7 and 21 days. The housekeeping gene GAPDH was used as a control. At 35 days, mineralization nodules were evaluated by Alizarin Red S staining. After 21 days, the expression levels of ALP for J/Ac and BSP were upregulated 80-fold and 25-fold, respectively. After 35 days, the mineralized area U, Ac and J/Ac was 18%, 71%, and 80%, for, respectively. The results demonstrated that a sandblasted/acid etched surface can affect adherent cell-bone specific gene expression, leading to a higher expression of osteoblast-specific genes and an increased in vitro mineralization response.


Subject(s)
Acid Etching, Dental , Air Abrasion, Dental , Alkaline Phosphatase , Gene Expression , Dental Implants , Mesenchymal Stem Cells , Osteoblasts , Sialoglycoproteins
SELECTION OF CITATIONS
SEARCH DETAIL